
ReTeLL (December 2017), Vol. 18

~93~

Group Travel Plan Optimization through Simulated Annealing

Technique
………………………………………………………………………….……………………………………………………………………………………………….…………………….

Dr. C. Muthu
Associate Professor, Department of Statistics

St. Joseph’s College, Tiruchirappalli
&

M. C. Prakash
PG Student, Bharathidasan University, Tiruchirappalli

Abstract

Stochastic Optimization Techniques are typically used for solving several

business problems that have many possible solutions across many variables, and

that have outcomes that can change greatly depending on the combinations of

these variables. In this paper, the Simulated Annealing Optimization Technique

is used to arrive at an optimal group travel plan for the players of the Indian

Basket Ball Team.

Keywords: Stochastic Optimization Techniques, Simulated Annealing

Technique

1. Introduction

The productivity and profitability of big organizations have recently witnessed a

great impact due to the application of Machine Learning algorithms [1]. Hadoop

and the related tools are now widely used for successfully implementing the

advanced Machine Learning algorithms in the business organizations [2]. Price

Predictors are often modeled by the Data Analysts by using the KNN algorithm

[3]. Potential insights into the customer preferences are now obtained by the Data

Analysts by applying the Hierarchical Clustering algorithm [4].

Optimization techniques enable us to find the best possible solution to a business

problem by trying many different solutions and scoring them to determine their

quality. Optimization Techniques are typically used in the cases where there are

too many possible solutions to try them all. The simplest but least effective

method of searching for solutions is just typing a few thousand random guesses

and seeing which one is best. More effective Optimization techniques, such as

the Simulated Annealing Technique, which is used in this paper for obtaining an

optimal travel planfor the players of the Indian Basket Ball Team, try to

intelligently modify the solutions in a way that is likely to improve them.

2. Data for Study

Planning a trip for a group of people from different locations all arriving at the

same place is always a challenge, and it often requires an optimum solution. There

are a lot of different inputs required, such as what every one’s flight schedule

should be, how many cars should be rented, and which airport is easiest. Many

ReTeLL (December 2017), Vol. 18

~94~

outputs should also be considered, such as total cost, time spent waiting at

airports, and time taken off work. Because the inputs cannot be mapped to the

outputs with a simple formula, the need for obtaining an optimum solution arises

in this case.

To begin, we create a new python file called scheduleOptimization.py and insert

the following code:

import time
import random

import math

team = [(‘Aravind’, ‘MAA’), (‘Rajvir’, ‘TRV’), (‘Vishesh’, ‘BLR’), (‘Amitpal’, ‘HYD‘),
 (‘Satnam’, ‘BOM’), (‘Talwinder’, ‘CCU’)]

InternationalAirport in New Delhi

destination = ‘DEL’

We are planning a trip for the members of the Indian Basket Ball Team who are

from all over the country and wish to meet up in New Delhi for participating in

the National Tournament. They will all arrive on the same day and leave on the

same day, and they would like to share transportation to and from the airport.

There are dozens of flights per day to New Delhi from any of the team members’

locations, all leaving at different times. The flights also vary in price and in

duration.

The sample data for this study are stored as flightSchedule.txt and this data file

contains origin, destination, departure time, arrival time, and price for a set of

flights in a comma-separated format:

DEL, MAA, 20:27, 23:42, 1690

MAA, DEL, 19:53, 22:21, 1730

DEL, BOM, 6:39, 8:09, 860

BOM, DEL, 6:17, 8:26, 890

DEL, BLR, 8:23, 10:28, 1490

BLR, DEL, 7:04, 9:11, 1280

We load this data into a dictionary with the origin and destination as the keys and

a list of potential flight details as the values. Add this code to load the data into

scheduleOptimization.py:

 flights = { }

 for line in file (‘flightSchedule.txt.’):

 origin, destination, departure, arrival, fare = line.strip().split(‘,’)

 flights.setdefault ((origin,destination), [])

 #Details are added to the list of possible flights

 flights [(origin, destination)].append ((departure, arrival, int (fare)))

We also define the utility function getTimeInMinutes(), which calculates how

many minutes into the day a given time is. This makes it easy to calculate flight

times and waiting times. We add this function to scheduleOptimization.py:

ReTeLL (December 2017), Vol. 18

~95~

 def getTimeInMinutes(t):

 x = time.strptime(t, ‘%H : %M’)

 return x[3] * 60 + x[4]

The challenge now is to decide which flight each person in the team should take.

Even though keeping total fare down is a goal, there are many other possible

factors that the optimal solution will take into account and try to minimize, such

as total waiting time at the airport or total flight time. We will take into account

these factors through a Cost Function, which we will discuss soon.

When approaching an optimization problem like this, it is necessary to determine

how a potential solution will be represented. A very common simple

representation is a list of numbers. In this case, each number can represent which

flight a team member chooses to take, where 0 is the first flight of the day, 1 is

the second, and so on. Since each team member needs an outbound flight and a

return flight, the length of this list is twice the number of team members. For

example, the list

 [1, 4, 3, 2, 7, 3, 6, 3, 2, 4, 5, 3]

represents a solution in which Aravind takes the second flight of the day from

Chennai to New Delhi, and the fifth flight back to Chennai on the day he returns.

Rajvir takes the fourth flight from Trivandrum to New Delhi, and the third flight

back.

3. The Cost Function

The cost function is the key to solving any optimization problem. The goal of

our optimization algorithm is to find a set of flights that minimizes the cost

function. The cost function in our Group Travel Optimization problem will

involve the following variables:

Fare : The total fare of all the plane tickets.

Travel Time : The total time that everyone has to spend on a plane.

Waiting Time : Time spent at the airport waiting for the other members of

the team to arrive.

Departure Time : Flights that leave too early in the morning may impose an

additional cost by requiring travelers to miss out on sleep.

Car Rental Period : If the team rents a car, they should return it earlier in the

day than when they rented it, or be forced to pay for a

whole extra day.

We have to now determine how much money that time on the plane or time

waiting in the airport is worth. The following flightScheduleCost() function takes

into account the total cost of the trip and the total time spent waiting at airports

for the various members of the team. It also adds a penalty of Rs.500 if the car is

ReTeLL (December 2017), Vol. 18

~96~

return at a later time of the day than when it was rented. We now add the following

flightScheduleCost() function to scheduleOptimization.py:

 def flightScheduleCost (soln):

 totalfare = 0

 latestarrival = 0

 earleistdeparture = 24 * 60

 for d in range (len(soln)/2):

 # Get the inbound and outbound flights

 origin = team [d][1]

 outbound = flights [(origin, destination)][int(soln[d])]

 returnf = flights [(destination, origin)] [int(soln[d+1])]

 # Total fare is the fare of all outbound and return flights

 totalfare += outbound[2]

 totalfare += returnf[2]

 # Track the latest arrival and earliest departure

 if latestarrival < getTimeInMinutes (outbound [1]):

 latestarrival = getTimeInMinutes (outbound[1])

 if earliestdeparture> geTimeInMinutes (returnf[0]):

 earliestdeparture = getTimeInMinutes (return[0])

 # Every person should wait at the airport until the latest person
 arrives.

 # They also should arrive at the same time and wait for their flights.

 totalWaitingTime = 0

 for d in range (len(soln)/2):

 origin = team [d][1]

 outbound = flights[(origin, destination)] [int(soln[d])]

 returnf = flights[(destination, origin)] [int(soln[d+1])]

 totalWaitingTime += latestarrival –
 getTimeInMinutes(outbound[1])

 totalwaitingTime += getTimeInMinutes (returnf[0] –
 earliestdeparture

 # Check whether this solution requires an extra day of car rental

 # That will be Rs. 500!

 if latestarrival > earliestdeparture: totalfare += 50

 return totalfare + totalwaitingTime

The logic involved in this cost function is simple. The total wait time assumes

that all the team members will leave the airport together when the last person

arrives, and will all go to the airport for the earliest departure. We can try this

flightScheduleCost() function in the following Python session:

 >>> reload (scheduleOptimization)
 >>>scheduleOptimization.flightScheduleCost(s)
 58230

ReTeLL (December 2017), Vol. 18

~97~

4. Simulated Annealing Optimization Technique

The goal of our Group Travel Optimization problem is to minimize cost by

choosing the correct set of numbers. In theory, we can try every possible

combination, but in this study, we have 16 flights, all with 9 possibilities, giving

a total of 916 combinations (i.e. 300 billion combination). Testing every

combination will guarantee that we get the best answer, but it will take a very

long time on most types of computers. Trying a few thousand random guesses

and seeing which one is best is another possible technique.

Randomly trying different solutions is very inefficient because it does not take

advantage of the good solutions that have already been discovered. In our study,

a flight schedule with a low overall cost is probably similar to other flight

schedules that have a low cost. Because random optimization technique jumps

around, it will not automatically look at similar flight schedules to locate the good

ones that have already been found.

The Simulated Annealing Optimization Technique begins with a random solution

to our Group Travel Plan optimization problem. It was a variable representing the

willingness to accept a worse solution, which starts very high and gradually gets

lower. In each iteration, one of the numbers in the solution is randomly chosen

and changed in a certain direction. In our study, Aravind’s return flight may be

moved from the second of the day to the third. The cost is calculated before and

after the change, and the costs are compared.

It the new cost is lower, the new solution becomes the current solution. However,

if the cost is higher, the new solution can still become the current solution with a

certain probability. This is done so as to avoid the local minimum problem.

In some cases, it is necessary to move to a worse solution before we can get to a

better one. Simulated annealing works because it will always accept a move for

the better, and because it is willing to accept a worse solution near the beginning

of the process. As the process goes on, the algorithm becomes less and less likely

to accept a worse solution, until at the end it will only accept a better solution.

The probability of a higher-cost solution being accepted is given by the following

formula:

 p = e((–highcost–lowcost)/willingness to accept a worse solution)

Since the willingness to accept a worse solution starts very high, the exponent

will always be close to 0, so the probability will almost be 1. As the willingness

to accept a worse solution decreases, the difference between the high cost and the

low cost becomes more important – a bigger difference loads to a lower

probability, so the algorithm will favour only slightly worse solutions over much

worse ones.

We now create the function annealingoptimization() and add it to

scheduleOptimization.py:

ReTeLL (December 2017), Vol. 18

~98~

def annealingOptimization (domain, costf, T=10000.0, coolingRate = 0.95, step = 1):

 # The values are initialized randomly
 vec = [float (random.randint (domain[i] [0], domain[i][1]))
 for i in range (len(domain))]
 while T > 0.1 :
 # One of the indices is chosen
 i = random.randint (0, len(domain) – 1
 # A direction to change the index is chosen
 dir = random.randint (–step, step)
 # A new list is created with one of the values changed
 vecb = vec[:]
 vecb [i] += dir
 if vecb [i] < domain[i][0] : vecb[i] = domain[i][0]
 elif vecb[i] > domain [i][1] : vecb[i] = domain [i][1]
 # The current cost and the new cost are calculated
 ea = costf (vec)
 eb = costf (vecb)
 p = pow (math.e, (–eb–ea) / T)
 # Check whether it is better, or it makes the probability cutoff
 if (eb < ea or random.random() < p) :
 vec = vecb
 # The willingness to accept a worse solution is decreased
 T = T * coolingRate
 return vec

To perform annealing, the above function first creates a random solution of the

right length with all the values in the range specified by the domain parameter.

The willingness to accept a worse solution and the coolingRate are optional

parameters. In each iteration, i is set to a random index of the solution and dir is

set to a random number between –step and step. It calculates the current function

cost and the cost if it were to change the value at i by dir.

The line of code p = pow (math.e, (–eb–ea) / T) shows the probability calculation,

which gets lower as T gets lower. If a random float between 0 and 1 is less than

this value, or if the new solution is better, the function accepts the new solution.

The function loops until the willingness to accept a worse solution has almost

reached 0, each time multiplying it by the cooling rate.

We now execute the annealingoptimization() function is the following python

session in order to get the optimum cost for our Group Travel Planning problem.

 >>> reload (scheduleOptimization)

 >>> s = scheduleOptimization.annealingOptimization (domain,

 scheduleOptimization.flightScheduleCost)

 >>>scheduleOptimization.flightScheduleCost(s)

 22780

ReTeLL (December 2017), Vol. 18

~99~

For printing all the flights that the Basket Ball Team Members need to take in

order to ensure the above mentioned optimum cost, we add the following

printFlightSchedule() function to scheduleOptimization.py:

 def printFlightSchedule(r) :

 for d in range (len(r)/2):

 name = team [d] [0]

 origin = team [d] [1]

 out = flights [(origin, destination)] [r[d]]

 ret = flights [(destination, origin)] [r[d+1]]

 print ‘%10s %10s %5s – %5s $%3s %5s %5s $%3s’

 % (name, origin, out[0], out[1], out[2], ret[0], ret[1], ret[2])

The optimum Group Travelling Plan obtained by using simulated Annealing

Technique shall now be obtained by executing printFlightSchedule() in a python

session:

 >>> scheduleOptimization.printFlightSchedule(s)

 Aravind Chennai 11:44 – 14:12 Rs 1090 10:53 – 12:23 Rs 7400

 Rajvir Trivandrum 11:32 – 15:59 Rs 2900 11:54 – 15:19 Rs 2560

 Vishesh Bengaluru 10:57 – 13:40 Rs 1890 10:42 – 13:26 Rs 1390

 Amitpal Hyderabad 10:29 – 13:41 Rs 2480 11:47 – 14:15 Rs 1700

 Satnam Mumbai 10:54 – 12:27 Rs 1340 10:53 – 13:31 Rs 1320

 Talwinder Kolkata 11:28 – 13:27 Rs 175 14:17 – 16:31 Rs 1290

It is obvious that the Simulated Annealing Optimization did a good job of

reducing the overall waiting times while keeping the costs considerably down.

References

 1. Jacques Bughin, “Big Data, Big Bang?”, Journal of Big Data, 2016, Vol.3,

Iss. 2, pp. 1-14.

 2. Muthu, C. and Prakash, M.C., “Impact of Hadoop Ecosystem on Big Data

Analytics”, International Journal of Exclusive Management Research -

Special Issue, 2015, Vol. 1, pp. 88-90.

 3. Muthu, C. and Prakash, M.C., “Building a Price Predictor for an Auctioning

Website”, RETELL, 2015, Vol. 15, Iss. 1, pp. 135-137.

 4. Muthu, C. and Prakash, M.C., “Hierarchical Clustering of Users’

Preferences”, RETELL, 2016, Vol. 16, Iss. 1, pp. 135-136.

 5. Muthu, C. and Prakash, M.C., “Matching the users of a Website using SVM

Technique”, RETELL, 2017, Vol. 17, Iss. 1, pp. 53-56.

 6. Muthu, C. and Prakash, M.C., “Using Bayesian Classifier for Email

Sorting”, RETELL, 2017, Vol. 17, Iss. 1, pp. 57-60.

	RETELL_2017dec_95.pdf
	RETELL_2017dec_96.pdf
	RETELL_2017dec_97.pdf
	RETELL_2017dec_98.pdf
	RETELL_2017dec_99.pdf
	RETELL_2017dec_100.pdf
	RETELL_2017dec_101.pdf

