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Abstract 

Stochastic Optimization Techniques are typically used for solving several 

business problems that have many possible solutions across many variables, and 

that have outcomes that can change greatly depending on the combinations of 

these variables. In this paper, the Simulated Annealing Optimization Technique 

is used to arrive at an optimal group travel plan for the players of the Indian 

Basket Ball Team. 
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1.  Introduction 

The productivity and profitability of big organizations have recently witnessed a 

great impact due to the application of Machine Learning algorithms [1]. Hadoop 

and the related tools are now widely used for successfully implementing the 

advanced Machine Learning algorithms in the business organizations [2]. Price 

Predictors are often modeled by the Data Analysts by using the KNN algorithm 

[3]. Potential insights into the customer preferences are now obtained by the Data 

Analysts by applying the Hierarchical Clustering algorithm [4]. 

Optimization techniques enable us to find the best possible solution to a business 

problem by trying many different solutions and scoring them to determine their 

quality. Optimization Techniques are typically used in the cases where there are 

too many possible solutions to try them all. The simplest but least effective 

method of searching for solutions is just typing a few thousand random guesses 

and seeing which one is best. More effective Optimization techniques, such as 

the Simulated Annealing Technique, which is used in this paper for obtaining an 

optimal travel planfor the players of the Indian Basket Ball Team, try to 

intelligently modify the solutions in a way that is likely to improve them. 

2.  Data for Study 

Planning a trip for a group of people from different locations all arriving at the 

same place is always a challenge, and it often requires an optimum solution. There 

are a lot of different inputs required, such as what every one’s flight schedule 

should be, how many cars should be rented, and which airport is easiest. Many 
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outputs should also be considered, such as total cost, time spent waiting at 

airports, and time taken off work. Because the inputs cannot be mapped to the 

outputs with a simple formula, the need for obtaining an optimum solution arises 

in this case. 

To begin, we create a new python file called scheduleOptimization.py and insert 

the following code: 

import time 
import random 

import math 

team =  [(‘Aravind’, ‘MAA’), (‘Rajvir’, ‘TRV’), (‘Vishesh’, ‘BLR’), (‘Amitpal’, ‘HYD‘), 
 (‘Satnam’, ‘BOM’), (‘Talwinder’, ‘CCU’)] 

# InternationalAirport in New Delhi 

destination = ‘DEL’ 

We are planning a trip for the members of the Indian Basket Ball Team who are 

from all over the country and wish to meet up in New Delhi for participating in 

the National Tournament. They will all arrive on the same day and leave on the 

same day, and they would like to share transportation to and from the airport. 

There are dozens of flights per day to New Delhi from any of the team members’ 

locations, all leaving at different times. The flights also vary in price and in 

duration. 

The sample data for this study are stored as flightSchedule.txt and this data file 

contains origin, destination, departure time, arrival time, and price for a set of 

flights in a comma-separated format: 

DEL, MAA, 20:27, 23:42, 1690 

MAA, DEL, 19:53, 22:21, 1730 

DEL, BOM, 6:39, 8:09, 860 

BOM, DEL, 6:17, 8:26, 890 

DEL, BLR, 8:23, 10:28, 1490 

BLR, DEL, 7:04, 9:11, 1280 

We load this data into a dictionary with the origin and destination as the keys and 

a list of potential flight details as the values. Add this code to load the data into 

scheduleOptimization.py: 

  flights = { } 

  for line in file (‘flightSchedule.txt.’): 

  origin, destination, departure, arrival, fare = line.strip( ).split(‘,’ ) 

   flights.setdefault ((origin,destination), [ ]) 

   #Details are added to the list of possible flights 

   flights [(origin, destination)].append ((departure, arrival, int (fare))) 

We also define the utility function getTimeInMinutes( ), which calculates how 

many minutes into the day a given time is. This makes it easy to calculate flight 

times and waiting times. We add this function to scheduleOptimization.py: 
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  def getTimeInMinutes(t): 

  x = time.strptime(t, ‘%H : %M’) 

  return x[3] * 60 + x[4] 

The challenge now is to decide which flight each person in the team should take. 

Even though keeping total fare down is a goal, there are many other possible 

factors that the optimal solution will take into account and try to minimize, such 

as total waiting time at the airport or total flight time. We will take into account 

these factors through a Cost Function, which we will discuss soon. 

When approaching an optimization problem like this, it is necessary to determine 

how a potential solution will be represented. A very common simple 

representation is a list of numbers. In this case, each number can represent which 

flight a team member chooses to take, where 0 is the first flight of the day, 1 is 

the second, and so on. Since each team member needs an outbound flight and a 

return flight, the length of this list is twice the number of team members. For 

example, the list  

  [1, 4, 3, 2, 7, 3, 6, 3, 2, 4, 5, 3] 

represents a solution in which Aravind takes the second flight of the day from 

Chennai to New Delhi, and the fifth flight back to Chennai on the day he returns. 

Rajvir takes the fourth flight from Trivandrum to New Delhi, and the third flight 

back. 

3.  The Cost Function 

The cost function is the key to solving any optimization problem. The goal of 

our optimization algorithm is to find a set of flights that minimizes the cost 

function. The cost function in our Group Travel Optimization problem will 

involve the following variables: 

Fare  :  The total fare of all the plane tickets. 

Travel Time  :  The total time that everyone has to spend on a plane. 

Waiting Time  :  Time spent at the airport waiting for the other members of 

the team to arrive. 

Departure Time  :  Flights that leave too early in the morning may impose an 

additional cost by requiring travelers to miss out on sleep. 

Car Rental Period :  If the team rents a car, they should return it earlier in the 

day than when they rented it, or be forced to pay for a 

whole extra day. 

We have to now determine how much money that time on the plane or time 

waiting in the airport is worth. The following flightScheduleCost( ) function takes 

into account the total cost of the trip and the total time spent waiting at airports 

for the various members of the team. It also adds a penalty of Rs.500 if the car is 
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return at a later time of the day than when it was rented. We now add the following 

flightScheduleCost() function to scheduleOptimization.py: 

  def flightScheduleCost (soln): 

   totalfare = 0 

   latestarrival = 0 

   earleistdeparture = 24 * 60 

   for d in range (len(soln)/2): 

    # Get the inbound and outbound flights 

    origin = team [d][1] 

    outbound = flights [(origin, destination)][int(soln[d])] 

    returnf = flights [(destination, origin)] [int(soln[d+1])] 

    # Total fare is the fare of all outbound and return flights 

    totalfare += outbound[2] 

    totalfare += returnf[2] 

    # Track the latest arrival and earliest departure 

    if latestarrival < getTimeInMinutes (outbound [1]):  

     latestarrival = getTimeInMinutes (outbound[1]) 

   if earliestdeparture> geTimeInMinutes (returnf[0]): 

     earliestdeparture = getTimeInMinutes (return[0]) 

   # Every person should wait at the airport until the latest person  
  arrives. 

   # They also should arrive at the same time and wait for their flights. 

   totalWaitingTime = 0 

   for d in range (len(soln)/2): 

    origin = team [d][1] 

    outbound = flights[(origin, destination)] [int(soln[d])] 

    returnf = flights[(destination, origin)] [int(soln[d+1])] 

    totalWaitingTime += latestarrival –    
   getTimeInMinutes(outbound[1]) 

    totalwaitingTime += getTimeInMinutes (returnf[0] –  
   earliestdeparture 

   # Check whether this solution requires an extra day of car rental 

   # That will be Rs. 500! 

   if latestarrival > earliestdeparture: totalfare += 50 

   return totalfare + totalwaitingTime 

The logic involved in this cost function is simple. The total wait time assumes 

that all the team members will leave the airport together when the last person 

arrives, and will all go to the airport for the earliest departure. We can try this 

flightScheduleCost() function in the following Python session: 

  >>> reload (scheduleOptimization) 
  >>>scheduleOptimization.flightScheduleCost(s) 
  58230  
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4.   Simulated Annealing Optimization Technique 

The goal of our Group Travel Optimization problem is to minimize cost by 

choosing the correct set of numbers. In theory, we can try every possible 

combination, but in this study, we have 16 flights, all with 9 possibilities, giving 

a total of 916 combinations (i.e. 300 billion combination). Testing every 

combination will guarantee that we get the best answer, but it will take a very 

long time on most types of computers. Trying a few thousand random guesses 

and seeing which one is best is another possible technique. 

Randomly trying different solutions is very inefficient because it does not take 

advantage of the good solutions that have already been discovered. In our study, 

a flight schedule with a low overall cost is probably similar to other flight 

schedules that have a low cost. Because random optimization technique jumps 

around, it will not automatically look at similar flight schedules to locate the good 

ones that have already been found. 

The Simulated Annealing Optimization Technique begins with a random solution 

to our Group Travel Plan optimization problem. It was a variable representing the 

willingness to accept a worse solution, which starts very high and gradually gets 

lower. In each iteration, one of the numbers in the solution is randomly chosen 

and changed in a certain direction. In our study, Aravind’s return flight may be 

moved from the second of the day to the third. The cost is calculated before and 

after the change, and the costs are compared. 

It the new cost is lower, the new solution becomes the current solution. However, 

if the cost is higher, the new solution can still become the current solution with a 

certain probability. This is done so as to avoid the local minimum problem. 

In some cases, it is necessary to move to a worse solution before we can get to a 

better one. Simulated annealing works because it will always accept a move for 

the better, and because it is willing to accept a worse solution near the beginning 

of the process. As the process goes on, the algorithm becomes less and less likely 

to accept a worse solution, until at the end it will only accept a better solution. 

The probability of a higher-cost solution being accepted is given by the following 

formula: 

 p = e((–highcost–lowcost)/willingness to accept a worse solution) 

Since the willingness to accept a worse solution starts very high, the exponent 

will always be close to 0, so the probability will almost be 1. As the willingness 

to accept a worse solution decreases, the difference between the high cost and the 

low cost becomes more important – a bigger difference loads to a lower 

probability, so the algorithm will favour only slightly worse solutions over much 

worse ones. 

We now create the function annealingoptimization( ) and add it to 

scheduleOptimization.py: 
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def annealingOptimization (domain, costf, T=10000.0, coolingRate = 0.95, step = 1): 

  # The values are initialized randomly 
  vec = [float (random.randint (domain[i] [0], domain[i][1])) 
   for i in range (len(domain))] 
  while T > 0.1 : 
   # One of the indices is chosen 
   i = random.randint (0, len(domain) – 1 
   # A direction to change the index is chosen 
   dir = random.randint (–step, step) 
   # A new list is created with one of the values changed 
   vecb = vec[:] 
   vecb [i] += dir 
   if vecb [i] < domain[i][0] : vecb[i] = domain[i][0] 
   elif vecb[i] > domain [i][1] : vecb[i] = domain [i][1] 
   # The current cost and the new cost are calculated 
   ea = costf (vec) 
   eb = costf (vecb) 
   p = pow (math.e, (–eb–ea) / T) 
   # Check whether it is better, or it makes the probability cutoff 
   if (eb < ea or random.random( ) < p) : 
    vec = vecb 
   # The willingness to accept a worse solution is decreased 
   T = T * coolingRate 
  return vec 

To perform annealing, the above function first creates a random solution of the 

right length with all the values in the range specified by the domain parameter. 

The willingness to accept a worse solution and the coolingRate are optional 

parameters. In each iteration, i is set to a random index of the solution and dir is 

set to a random number between –step and step. It calculates the current function 

cost and the cost if it were to change the value at i by dir. 

The line of code p = pow (math.e, (–eb–ea) / T) shows the probability calculation, 

which gets lower as T gets lower. If a random float between 0 and 1 is less than 

this value, or if the new solution is better, the function accepts the new solution. 

The function loops until the willingness to accept a worse solution has almost 

reached 0, each time multiplying it by the cooling rate. 

We now execute the annealingoptimization( ) function is the following python 

session in order to get the optimum cost for our Group Travel Planning problem. 

 >>> reload (scheduleOptimization) 

 >>> s = scheduleOptimization.annealingOptimization (domain,  

  scheduleOptimization.flightScheduleCost) 

 >>>scheduleOptimization.flightScheduleCost(s) 

 22780 
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For printing all the flights that the Basket Ball Team Members need to take in 

order to ensure the above mentioned optimum cost, we add the following 

printFlightSchedule( ) function to scheduleOptimization.py:  

 def printFlightSchedule(r) : 

  for d in range (len(r)/2): 

  name = team [d] [0] 

  origin = team [d] [1] 

  out = flights [(origin, destination)] [r[d]] 

  ret = flights [(destination, origin)] [r[d+1]] 

  print ‘%10s %10s %5s – %5s $%3s %5s %5s $%3s’ 

   % (name, origin, out[0], out[1], out[2], ret[0], ret[1], ret[2]) 

The optimum Group Travelling Plan obtained by using simulated Annealing 

Technique shall now be obtained by executing printFlightSchedule( ) in a python 

session:  

 >>> scheduleOptimization.printFlightSchedule(s) 

  Aravind Chennai   11:44 – 14:12  Rs 1090  10:53 – 12:23  Rs 7400  

  Rajvir Trivandrum 11:32 – 15:59 Rs 2900  11:54 – 15:19  Rs 2560 

  Vishesh Bengaluru  10:57 – 13:40  Rs 1890  10:42 – 13:26  Rs 1390  

  Amitpal Hyderabad  10:29 – 13:41  Rs 2480  11:47 – 14:15  Rs 1700  

  Satnam Mumbai  10:54 – 12:27  Rs 1340  10:53 – 13:31  Rs 1320 

  Talwinder Kolkata  11:28 – 13:27  Rs 175  14:17 – 16:31  Rs 1290 

It is obvious that the Simulated Annealing Optimization did a good job of 

reducing the overall waiting times while keeping the costs considerably down.  
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